鸿博体育推荐系统是驱动内容分发的引擎,而个性化则是推荐系统的核心思想。分类模型和排序模型是业界常用的两种个性化建模方式。本文探讨两种方法的异同点,总结如下:
分类模型回答的是用户喜不喜欢这个物品,而排序模型回答的用户更喜欢哪一个;
在对事件发生的假设上,分类模型认为个样本之间相互独立且服从相同的分布,排序模型认为同组内部的样本是有关联关系和可以相互比较的;
从参数更新上来看,分类模型的参数更新由特征的绝对值确定,而排序模型由不同样本之间的特征的相对值确定。
在二项分布中事件只有两个取值 {0,1},1 表示事件发生,0 表示未发生。其中事件发生的概率为p,不发生的概率为 1-p,用公式表达事件发生或者不发生的概率:
分类模型试图回答这样一个问题:如果一个事件具备特征 x,那么根据以往的经验(和统计),事件为线)) 是多少?
为了回答这个问题,分类模型使用了两个函数,第一个函数将特征描述 x 映射为一个实数:
f(x) 值过大或者过小时 sigmoid(f(x)) 的导数趋近于 0,不会因为异常值导致模型难于收敛。
经过上述两次变换以后分类模型将一个特征描述 x 转换为一个概率值 P(x),下一步的工作是在训练集上让点击数据的 P(x) 接近于 1,而未点击数据的概率值接近于 0。我们引入辅助变量 P’(x),对于点击事件定义其值为 1,非点击事件定义其值为 0。所以我们要做的是在训练集上让 P(x) 接近于 P’(x)
排序模型有多种实现,本篇文章只讨论 Pairwise 模型。在 Pairwise 模型中,首先对数据分组,在搜索中每次搜索是一个组,在推荐中可以根据请求 ID 分组,也可以根据用户 ID 分组,哪种效果更好需要看具体使用场景。
类似于分类模型,我们也是让模型的输出结果与真实事件一致,只不过这里的事件不是点击与否的单个事件,而是偏序关系是否成立这个事件。类比分类模型,我们定义以下变量:
根据分类模型和排序模型的建模过程可知,分类模型的输出值 f(x) 为正负概率比值对数,对其求 sigmoid 函数以后就是事件发生的概率。而排序模型的分数值却不能直接和输出概率等价,只能将不同文档的分数放在一起进行比较认为用户可能更喜欢哪一个。从这个观点来看,分类模型不要求输出概率绝对正确,而只要求相对关系正确。因此分类模型要对两个样本都有准确的预估才能保持正确的偏序关系,其要求更高;而排序模型是分类模型的一个简化版本,只要求偏序关系的正确,并不要求预估值的绝对准确。一个完美的分类模型必然会是一个完美的排序模型,反之不然。在机器学习领域我们知道存在“天下没有免费的午餐”定律,在相同的数据集下,如果对模型的要求更高,那么必然要付出更多的代价。如果付出的代价一定(数据集相同,底层模型一致),一个更简单的模型效果可能更好鸿博体育。
分类模型(公式 2)的总体惩罚值是各个样本惩罚值之和,样本之间的惩罚值没有显示关系;排序模型(公式 3)的总体惩罚值是各个 Pair 之和,一个 Pair 内部的惩罚值之间有相互关系,要求两者对比关系显著。因此分类模型建立在每个样本相互独立的基础上,而排序模型建立在同组样本可相互对比的基础上。结合推荐系统的具体使用场景,用户其实是主动挑选了更感兴趣的内容,因此上述比较是更符合客观情况的,另外用户在选择买还是不买/看还是不看的时候不排除有“货比三家”的心智模型,对内容进行比较之后再进行消费(时间或者金钱)鸿博体育,考虑到这些因素,排序模型更能反映客观世界的真实情况。
由上述更新公式可以看出鸿博体育,pointwise 的参数由文档特征的绝对值确定。 而 pairwise 的参数由文档相对文档特征确定。对于统计特征,
低一到两个数量级,比如点击率的差 0.11 – 0.10 = 0.01。也就是说 pairwise 模型降低了模型对统计特征的敏感度。对于 ID 特征,如果用户点击和展示的是不同的文档,其语义信息不一样,所以:
表示负样本的语义向量)。 但是如果用户一直沉溺在类似的文档中,比如标题中都含有类似的色情词,他们的语义向量会比较接近一些,因此
综上,pairwise 模型相对于 pointwise 模型在抑制奇闻怪异,色情文档方面有两个优点:
为了方便讨论,我们暂时换用 Hinge Loss 作为排序模型的惩罚函数:
因此在 Hinge Loss 函数下排序模型建模的是条件概率,比联合概率少了 P(u) 的先验概率计算过程。如果 P(u) 的计算精确,那么计算联合概率和条件概率效果一样,如果 P(u) 计算有误差,那么省略掉 P(u) 的模型更鲁棒。再次套用“没有免费午餐定律”,其实排序模型是减小了模型的复杂度。
邹敏,现任 Opera 高级算法专家。毕业于中科院,曾先后在微软和阿里巴巴大文娱工作过。对本文感兴趣的同学,欢迎与作者邮件交流:
搜索,是用户获取信息鸿博体育,找答案最方便快捷的方式。一次用户搜索会经历 Query 解析、召回、排序多个环节,排序作为最后整个过程一环,对用户的体验有最直接的影响。
本文主要讨论搜索相关性,它是整个产品的基石,也是搜索技术中的核心。下文则将依次介绍闲鱼搜索相关性遇到的问题现状,优化升级方案以及后续进一步的优化方向鸿博体育。
混淆矩阵是分类模型性能评估的基础指标,它可以直观反映模型预测的具体结果,而且KS、AUC这些高阶评估指标也来自混淆矩阵。
本文从数据处理、用户行为建模到个性化推荐,分享达观数据在个性化推荐系统方面积累的一些经验。
机器学习中,对一个给定的问题到底能够学到什么程度,还需要专门的计算学习理论来解释。
全球性的搜索引擎Google,看似简单的搜索框背后隐藏的是极其复杂的系统架构和搜索算法,其中排序(以下统称Ranking)的架构和算法更是关键部分。Google正是通过PageRank算法深刻改变搜索排序而一举击败众多竞争对手。本文将介绍有关搜索引擎排序的相关技术内容。
在信息爆炸的互联网时代,推荐系统可以理解用户的个性化偏好和需求,帮助用户筛选出自己感兴趣的产品和服务。
本文主要介绍爱奇艺随刻基础推荐团队在短视频推荐业务的粗排模型优化上落地的一系列实践方案。
本文主要介绍了深度广度模型在用户价值量化上的应用,包括wide&deep的应用与迭代,端到端与预训练的讨论以及时序模型与深度广度模型的结合,在预测结果上也取得了较为明显的正向收益,提高了头部准确率。
文档理解最基本的一个步骤就是给文档分类,今天我就来和你聊一聊文档分类的一些基本概念和技术。
本文主要说明微视,这种富媒体形态的短视频平台,是如何通过视频内容特征以及用户属性和行为数据,来精准预测用户对短视频的喜好的。
数据科学家对优化算法和模型以进一步发掘数据价值的追求永无止境。在这个过程中他们不仅需要总结前人的经验教训,还需要有自己的理解与见地,虽然后者取决于人的灵动性,但是前者却是可以用语言来传授的。最近Devendra Desale就在KDnuggets上发表了一篇文章,总结了Quora的工程副总裁Xavier Amatriain在Netflix和Quora从事推荐系统和机器学习工作时所总结的20条经验教训。
本案例集详细阐释了 QQ、腾讯会议、和平精英、小红书、斗鱼、微盟等十多个亿级用户产品背后的大规模云原生...